
4 Advanced Counting Techniques

4.1 Mathematical induction (weak induction)

This section presents another proof technique (besides direct, contrapositive and con-
tradiction)

1. mathematical induction is used to prove statements that are true for all positive
integers or for positive integers greater than some number n0

2. the proof of a statement P (n), n ≥ 1 has two steps:

(a) Basis Step: show that P (1) is true The basis step is the foundation of
the proof. For example, a statement can ask to prove that: for all positive
integers we have that n! ≤ nn, and so the proof will start with:
Proof: Show P (1) is true: Note that 1! = 1 is less than or equal to 11 = 1.
The inductive step will continue now.

(b) Inductive Step: ∀k ≥ 1 (P (k) → P (k + 1)) This step proves that every
statement P (k + 1) is true given that the previous one, P (k), is true. This
implication is proved using a direct proof (P (k) the inductive hypothesis).

3. So here is what the induction does: if P (1) is T as we showed in the basis step,
we can use the inductive step we obtain that P (2) is T (here k = 1). And then,
since we have that P (2) is T, we use the inductive step to get that P (3) is T.
And since P (3) is T, we again use the inductive step to get that P (4) is T. And
continuing in this manner, one may see how P (n) is T by building up on the
basis step and proving that we can go from any P (k) to P (k + 1).

4. The basis step may not always be exactly P (1). For example, if the results says
to show that a statement is true for the positive integers greater than or equal
to some number n0, then P (n0) is what we have to show in the basis step (P (1)
is common, but it could be some P (n0) for n0 > 1). For example, if the result
states that: ∀n > 2 prove that n! ≤ nn, then the basis step will check P (3) :
Note that 3! = 3 · 2 · 1 = 6 is less than or equal to 33 = 27.

5. types of problems that we will prove by mathematical induction:

• summations

• inequalities

• divisibility

1



4.2 Recurrence Relations

1. This is a different version than the one in the book, which I hope it helps more
as you look at the examples in both sections.
Strong Induction: To prove that P (n) is true for all positive integers n ≥ n0,
where P (n) is a propositional function, we complete two steps:

• Basis step: verify that P (n0), P (n0 +1), . . . , P (k0) is true (that is verify the
first case (n = n0 which sometimes happens to be 1), and the other cases
that cannot result from the inductive step, either because they don’t follow
the pattern or can’t be used in the inductive step)

• Inductive step: prove that P (n0)∧P (n0+1)∧ . . .∧P (k) are true ⇒ P (k+1)
is true for all positive integers k ≥ k0.

2. to determine how many P (n)s you need to check in the basis step (i.e. to find
k0), one should first work on the inductive step to see what is the smallest value
for k needed in the inductive step (or for which the inductive step works). One
good example is Example 4 page 287, which presents a proof by induction, and
then a proof by strong induction. In the inductive step of the proof by strong
induction, when P (k − 3) is considered, we need k − 3 ≥ 12 (since we’re proving
the result for n ≥ 12). For this reason k ≥ 15, and so P (12), P (13), P (14), P (15)
must be checked in the basis step. If this is not verified (i.e. only the first value
is verified in the basis step of strong induction), then problems may occur– see
problems 29 or 30 page 293.

3. it always helps to test a few cases for yourself before attempting to prove it, just
to make sure that it works, and to see how to work the inductive step.

4. in practice, the weak form of mathematical induction (Section 4.1) should be the
first attempted method of proof. If the proof is not straightforward, then strong
induction might be better since it has more assumptions to be used in the proof.

5. skip the computational geometry examples

6. Well-Ordering Property: Every nonempty set of non-negative integers has a small-
est element.

7. WOP is the basis for induction

8. one nice application is to prove relations involving recursively defined functions
and sets (used in Dynamic programing for example)

2



4.3 Recursive Definitions and Structural Induction. (up to
(not including) Structural induction)

1. Recursion: A process/formula that defines recursively the nth step based on
(some) previous step/steps. The basis step needs to be defined in order to build
up the formula from it.

2. recursively defined functions

• Factorials (Recall that F (n) = n! = n(n− 1)(n− 2) · · · 3 · 2 · 1):
BASIS STEP: F (0) = 1
RECURSIVE STEP:F (n) = n · F (n− 1)

• Fibonacci numbers:
BASIS STEP: f0 = 0, and f1 = 1,
RECURSIVE STEP: fn = fn−1 + fn−2, n ≥ 2.

3. well defined: there is a unique output for each input

4. recursively defined sets

• Σ∗ is the set of strings of the alphabet Σ, such that
BASIS STEP: λ ∈ Σ∗ is the empty string (string containing no symbols)
RECURSIVE STEP: if w ∈ Σ∗ and x ∈ Σ, then wx ∈ Σ∗,

• Let Σ be a set of symbols and Σ∗ be the set of strings formed from symbols
in Σ. We define the concatination of two strings denoted by · as follows:
BASIS STEP: if w ∈ Σ∗, then w · λ = w, where λ is the empty string
RECURSIVE STEP: if w1, w2 ∈ Σ∗ and x ∈ Σ, then w1 · (w2x) = (w1 ·w2)x

• rooted trees consist of a set of vertices with a fixed vertex called root, and
edges are defined by
BASIS STEP: a single vertex is a degenerated rooted tree
RECURSIVE STEP: Tn+1 is formed from n rooted trees Ti with root ri, by
adding a new root r together with the edges rri (1 ≤ i ≤ n).

– extended binary trees i = 2 in the above definition, and T1 or T2 could
be empty

– full binary trees i = 2 in the above definition, and neither T1 nor T2 can
be empty

5. up to (not including) Structural Induction

3


	Advanced Counting Techniques
	Mathematical induction (weak induction)
	Recurrence Relations
	Recursive Definitions and Structural Induction. (up to (not including) Structural induction)


